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Problem LS. Given a real m X n matrix A of rank k, and a real m-vector b, find 
a real n-vector xo minimizing the euclidean length of Ax - b. 

It is known that this problem always has a solution. The solution is unique if 
k = n. If k < n there is an (n - k)-dimensional linear flat of solutions. In this 
solution flat there is a unique vector of minimum euclidean length and we shall 
adopt this additional condition to impose uniqueness on the solution xo of Pro- 
blem LS. 

In the case of k < n the general solution of Problem LS can be expressed in the 
parametric form xo + Hy, where H is an n X (n - k)-matrix of rank n - k satisfy- 
ing AH = 0 and y is an arbitrary (n - k)-vector. We will treat the problem of 
computing H subject to the additional condition that the column vectors of H be 
orthonormal. 

In Section 2 we recall certain relevant properties of the singular value decomposi- 
tion of a matrix and the pseudoinverse of a matrix. Perturbation theorems are 
stated for pseudoinverses. In particular for the full rank case (k = min (m, n)), 
Theorem 2.4.2 and the consequent Theorems 2.4.3, 2.4.4, and 2.4.5 are more precise 
and complete than similar previously published theorems of which we are aware. 
Closely related results are given in [8], [10], [16], and [17]. 

An algorithm using Householder orthonormal transformations for the solution of 
Problem LS when k = n was given by Businger and Golub [1]. This algorithm has 
favorable numerical properties [14] due to the use of orthonormal transformations 
and the avoidance of the formation of the matrix N = ATA. Many algorithmic 
variations of A TA methods have been developed to meet special requirements, or to 
take advantage of special properties. Examples include sequential availability of data 
(rows of the augmented matrix [A, b]) in real time, linear equality constraints, com- 
puter storage limitations, rank deficient problems, block diagonal matrices, etc. We 
have investigated the possibility of adapting the Householder transformation tech- 
nique to some of these special cases and have found that it is frequently possible 
to do so. Gram-Schmidt orthogonalization can also be organized to meet certain 
special requirements (see [11], [13], and [16] for example). 

Specifically we propose to identify two basic algorithms, one to construct a 
Householder transformation matrix in the usual compactly stored form and the 
other to multiply a vector by such a matrix. We describe these basic algorithms in 
Section 3. 

In Section 4 we use these two basic algorithms as an aid in describing an exten- 
sion of the Businger-Golub algorithm to treat the case of k < n, including the com- 
putation of the matrix H needed to define the complete solution of Problem LS. 

In Section 5 we illustrate the use of these two basic algorithms as components 
in the definition of algorithms for a variety of computational problems in linear 
algebra. 

2. Preliminary Notation and Theorems. 
2.1. Notation. A real matrix A = {aij} having m rows and n columns will be 

called an m X n matrix. The designation Amxn will also be used. The transpose 
of A will be denoted by A T. 

The symbols I, and Oq will denote respectively the p X p identity matrix and 
the q X q zero matrix. 
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If S is the k X k diagonal matrix 

S 2 0] 
S2 

0 Skip 

then we will write S = diag (si, *, Sk). 

An m X n matrix P, (m > n), is orthonormal if PTP = In. 
For any integer q > 0, we will denote the q-dimensional linear coordinate vector 

space by Eq. 
For two q-dimensional vectors xi and X2, (xl, X2) = x1Tx2 = x2Txl, and if y is a 

vector in Eq with consecutive components yl, *, then 

111 = (E Y _ (YTY)12 = (Y Y)1/2 

is the euclidean norm of y. We will avoid referring to the dimension of the space to 
which a vector belongs except when failure to do so might lead to confusion. 

The corresponding matrix norm, IIAI , for an m X n matrix A, is the spectral 
norm, i.e. the square root of the maximal eigenvalue of ATA (or, equivalently, 
AAT). 

If A is an m X n matrix, then the range of A is denoted by 

61(A) = {w EmEw = Ax, x E- E} . 

For an arbitrary real number a, define 

sgn (a)= 1, a > 0 

=-1, a < O. 

2.2. The Singular Value Decomposition and the Pseudoinverse. 
THEOREM 2.2.1. Let A be an arbitrary m X n real nonzero matrix of rank k < min 

(m, n). Then there exist matrices U, S, and V of respective dimensions m X k, k X k, 
and n X k such that 

(2.2.1) A = USVT. 

The matrices U and V are both orthonormal. Thus 

(2.2.2) UTU = Ik 

and 

(2.2.3) VTV = Ik. 

The matrix 

(2.2.4) S = diag (s1, *, Sk) 

has diagonal terms s1, * Sk for which s1 > S2 _ ... > Sk > 0. These scalars are the 
nonzero singular values of the matrix A. The singular values are unique. 
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See [2] or [3], pages 9-10 for a proof of Theorem 2.2.1, and [4] for an efficient 
procedure for computation of this singular value composition. 

Alternative statements of Theorem 2.2.1 are useful in certain circumstances. 
If q = min (m, n) one may write A = Umxq Sqxq (Vnxq) T or A = UmXm Smxn (V.X.) T. 
In these alternative statements the matrix S is augmented by the inclusion of zero 
elements and the matrices U and V are augmented by additional orthonormal 
columns. In any case one would say that the matrix A has q singular values of 
which k are positive and q - k are zero. 

The following characterizations are useful for the largest singular value, si, the 
smallest positive singular value, Sk, and the smallest singular value, S. 

(2.2.5) si = max {I jAxjj :lxjj = 1 , 

(2.2.6) Sk = min { jAxl :jxjj = 1 and x C (R(AT) 

and 

(2.2.7) Sq = min { jjAxfl : lxjj - 11 

THEOREM 2.2.2. Suppose that A is an m X n real matrix. Then there exists exactly 
one real n X m matrix X such that 

(a) AXA = A, 

(2.2.8) (b) XAX = X 

(c) (AX)T = AX 

(d) (XA)T = XA 

The matrix A+ = X is called the pseudoinverse of A. 
The proof of Theorem 2.2.2 can be found in [5]. 
THEOREM 2.2.3. Let Am~n, UmXky BkXk, and VmXk be matrices such that B is non- 

singular A = UBVT, UTU = Ik, and VTV = Ik. Then 

(2.2.9) A+ = VB-1UT. 

This theorem is easily established by verifying that VB-1UT satisfies the condi- 
tions for X of (a) through (d) of Eq. (2.2.8). 

Useful special cases of Theorem 2.2.3 arise when some of the matrices U, B, or V 
are identity matrices. Furthermore Theorem 2.2.3 can be used to prove a similar 
theorem where B may now be singular and Eq. (2.2.9) becomes A+ = VB+UT. 

We list a number of useful identities involving the singular value decomposition, 
Amxn = UmXk SkXk (VnXk)T, and the pseudoinverse A+. For convenience we assume 
k rank (A) > 0 so that Sk-Xk exists. 

(2.2.10) A = USVT, A T = VSUT. 

(2.2.11) flAIl = 1AfTl = 11S1I = S1. 

(2.2.12) A+ = VS-1UT, (A+)+ = A, 

(A T)+ = (A +)T IIA+11 = |I S-11 = Sk. 

(2.2.13) ATA = VS2VT AA = US2 UT. 
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(2.2.14) flA TAfl = flAA Tfl = 11S2ll Si'2 

(2.2.15) (ATA)+ = A+A T+ = VS-2VT. 

(2.2.16) (AA T)+ = A T+A+ = US-2UT. 

(2.2.17) 11 (ATA)+fl = 11 (AAT)+fl = IIS-2l1 = Sk 

(2.2.18) A+A = VVT, AA+ UUT. 

(2.2.19) If rank (A) = n,A+ = (ATA)-'AT and A+A = 

(2.2.20) If rank (A) = m, A+ = A T(AA T)-1 and AA+ Im. 

(2.2.21) The vector xo = A+b is the unique minimum length solution of Problem LS. 

If WmXn and Rnxn are each of rank n then 

(2.2.22) (WR)+ =R-1W+ 

(2.2.23) A+AT+AT = A+ 

(2.2.24) AT = A TAA+. 

The orthogonal projection of an m-vector b onto the range space of an m X n 
matrix A will be denoted by bA and is defined by 

(2.2.25) bA = AA+b. 

Note that bA = Axo where xo = A+b. 
If rank (A) = k > 0 define the spectral condition number of the matrix A, by 

(2.2.26) K KA -Cond (A) = Sl/Sk 

where si and Sk are respectively the largest and smallest nonzero singular values of 
A. If A = O, so that k = 0, define Cond (A)=1. 

Note that [6] if A $ O0 

(2.2.27) Cond (A) - IAf . JJA+1J = Cond (AT) = Cond (A+), 

and that for any matrix A 

(2.2.28) Cond (ATA) = Cond (AAT) = [Cond (A)]2. 

We now prove the following 
THEOREM 2.2.4. Suppose A is an m X n matrix of rank k and that H is an n X q 

matrix such that HTH Iq. If (R(H) C (R(AT), then 

(2.2.29) Cond (AH) < Cond (A). 

Proof. If AH = 0, the inequality of Eq. (2.2.29) is obvious. Suppose, then, that 
AH $ 0. Let s, > * * * >q denote the q singular values of AH. 

Then, on the one hand, g, I=AHII ? J]A I IIHII = 1IA ] = si, so that 

(2.2.30) i _ Si . 

On the other hand, the smallest nonzero value of A (see Eq. (2.2.6)) is char- 
acterized by the equation 
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Sk= min ImAwl < in Aw 
(2.2.31) wEGI(AT); w#O JjWfl wG&R(H); wOO IjWll 

HyyOAf~yll - .jJAHy = min lfy min fI = Sq X 

so that 

(2.2.32) Sk < Sq. 

From Eq. (2.2.26) and the inequalities (2.2.30) and (2.2.32) the proof of Eq. 
(2.2.29) and Theorem 2.2.4 follow. 

Note that the requirement that 6R(H) C 6R(AT) is certainly satisfied if rank (A) 
= n since in that case 61(AT) = En. 

Also note that Theorem 2.2.4 implies that for any arbitrary m X n matrix 
A (m > n), of rank n, the m X (n - k) matrix A' formed by deleting k columns 
from A is such that 

(2.2.33) Cond (A') ? Cond (A). 

To verify this put 

(2.2.34) H = In-k 

where S is an n X n permutation matrix such that the last k columns of A S are to 
be deleted. Since 6R(H) C 6R(AT), it follows from Theorem 2.2.1, Eq. (2.2.34) and 
Theorem 2.2.4 that 

Cond (A') = Cond (AH) ? Cond (AS) = Cond (A). 

In an analogous manner we can prove that for any arbitrary m X n matrix A, 
(m < n), of rank m, the (m - ') X n matrix A" formed by deleting k' rows from 
A satisfies the inequality 

(2.2.35) Cond (A") < Cond (A). 

We summarize these remarks with 
THEOREM 2.2.5. If more independent parameters are introduced into an overde- 

termined linear least squares problem of full rank, then the resulting coefficient matrix 
has the same, or a greater, condition number. 

More precisely, and more generally, let A be an m X n matrix, (m > n), of rank n. 
Let B denote an m X k (k < m - n), matrix such that the augmented m X (n + k) 
matrix [A, B] is of rank n + Ic. Then 

(2.2.36) Cond (A) < Cond ([A, BI). 

2.3. General Perturbation Theorems. In the following discussion of perturbations 
we will use the notation 

A8 = A + dA, PA = ldAI!/IIA11, 

ba=b + db, Pb = 11611111bIl 
THEOREM 2.3.1. 
(a) Suppose that bA # 0. Then 
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(2.3.1) fA+b - A+ball < Cond (A) lb - bail-A+bl. 
llbl llbA ll 

For every matrix A the inequality of Eq. (2.3.1) may be an equality for certain 
vectors b and ba. 

(b) Suppose that A 5 0 and bA i- 0. Then 

As+b -A+bll < Cond (A) 1A- A IlAa+bll + bA- b4 IIA+bll1 
(2.3.2) L 1A A 1 flbfll 

+ IIA+A - A+Al IlAa+bll . 

Proof. (a) We will first establish the inequality (2.3.1). The inequalities 

(2.3.3) IIA+b - A+ball < IIA+l Ib-ball 

and 

(2.3.4) llbAl < IlAll lA+bj 
imply that 

ffA+b - A+ball < IJAfl JlA+lJ jlb - b IfA+bll 
lbAl 

= Cond (A) gb - b-e[ jbf IfA+bbl, 
l~bll flbAfl 

which proves Eq. (2.3.1). 
For any matrix A this bound may be attained for certain vectors b and ba. 
Let the columns of the matrices U and V of Eq. (1.8) be denoted by ui, U Uk 

and v1, ..., Vk respectively. 
If k < m let ft denote a unit vector orthogonal to all ui, (i = 1, * , k). Then 

for a > 0 define b = ui + ft and ba = b + V/26Uk. If k = m define b = u, and 
ba = b + bUk for 8 > 0. 

In either case the equality condition in Eq. (2.3.1) is attained since the terms 
on both sides of Eq. (2.3.1) may be evaluated with: 

A+b - A+ball = V\26sk-' if k < m 

= b8k-1 if k = m, 

Cond (A) = S1/Sk , 

fb - ball/llblf = 6, 

fbll/llbAff = -V2 if k < m 

= 1 if k = m, 

and 

ffA+bll = Sl 

Part (a) of Theorem 2.3.1 is now completed. We now prove part (b). 
From bA, = AaAb+b and Eq. (2.2.8) we have the identity 

(2.3.5) Aa+b - A+b = A+(A - Aa)Aa+b - A+(bA- bAs) - (A+A - A+Aa)Aa+b. 

With Eq. (2.3.5) and part (a) of this theorem we see that 
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A +b - A+bfl _!41A_11AIjAI - A l b 

? 
Cond (A) flbA -b b614 JA+b 

+ !JA+A - A+A6A1 JA6+bJJ 

= Cond (A)[bL 4- fAs +bIlAbl ? |bA -b H A+b 

+ JA+A - A+A6Al JJAa+bJJ, 

which proves Eq. (2.3.2) and completes the proof of Theorem 2.3.1. 
The inequality of Eq. (2.3.1) shows that relative error in the solution can be 

bounded by a product of the relative error in the vector b + db, together with 
Cond (A) and the ratio JbHJ/HlbAJ ? 1. Thus JbHJ/HlbAHJ (the secant of the angle b 
makes with 6R(A)) can be interpreted as a condition number of b relative to a given 
matrix A. 

The inequality of Eq. (2.3.2) displays the relative error in the solution in 
terms of Cond (A), the relative error in the coefficient matrix, the resulting rela- 
tive change in the projection of b onto iR(A) and (R(As), and the norm of the matrix 
HA+A - As+A61j. 

THEOREM 2.3.2. If KPA < 1, then rank (A + dA) ? rank (A). 
Proof. Let k = rank (A). If k = 0 the theorem is obviously true. 
If k > 0 let A = U,,Xk SkXk (VnXk)T be a singular value decomposition of A. We 

may write 

(2.3.6) UT(A + dA)V = S + UT(dA)V = S(Ik + P) 

where P = S-1UT(dA)V. Then JJPfl < JIS-111 JdAfl = KPA < 1. It follows that 
(Ik + P) is nonsingular, i.e. of rank k. Thus the rank of each of the three matrix 
factors on the left side of Eq. (2.3.6), one of which is A + dA, must be at least k, and 
the proof of Theorem 2.3.2 is completed. 

THEOREM 2.3.3. Let B = A + dA. If rank (B) > rank (A) and KPA < 1, then 

KB - (1/PA) - 1. 

Proof. Applying the contrapositive of Theorem 2.3.2 to B the condition rank (B) 
> rank (B - dA) implies that KB(fldAHI/HIBIf) > 1. Thus 

>B 
JJ > JJAJJ 

- ffdAff 
-=1PA 

KB- 
= _ IdAfl= fdAl1= (1/PA) 

which completes the proof of Theorem 2.3.2. 
One interpretation of the above theorem is that if a matrix B is very close to a 

matrix of lower rank, then B has a very large condition number. This provides some 
motivation for preferring the lowest possible rank when data errors lead to un- 
certainty of the rank of a matrix. 

2.4. Perturbation and Differentiability Theorems for Matrices of Full Rank. A 
matrix Amn is of full rank if rank (A) = min (m, n). For these matrices perturba- 
tion theorems can be obtained which are more explicit than the general theorems 
given in the previous section. 
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Theorem 2.4.1 extends to full rank rectangular matrices a theorem well known 
13, p. 93] for square nonsingular matrices. 

THEOREM 2.4.1. Let k = rank (Axes) = min {m, n} _ 1. If KPA < 1 then 
rank (A + dA) = k and fj(A + dA)+|I ? IfA+11/(1 - KPA). 

Proof. Let the singular values of A be denoted by si > ? * * > Sk > 0 and those 
of A + dA by s, _ ... > Sk _ 0. The conclusions of the theorem are equivalent 
to assertions that Sk > 0 and Sk-l C Sk-'/(I - skhJdA I). Thus it suffices to prove 
that Sk > Sk - JjdA f > 0. 

The latter inequality is a direct consequence of the hypothesis KPA < 1 since 
KPA = SkA IdA II. 

Using Eq. (2.2.7) we write 

8k = min {III(A + dA)xJI J:xJI = 1 
= min { IjAx + dAxif 1fxil = 11. 

To evaluate this minimum note that if IIxII = 1 then IIdAxil _ IIdA < Sk-< 

IlAx!I, and thus JjAx + dAxj > JjAxjI - ||dAxI > Sk - H|dAH|. Therefore Sk > 

Sk- l dA Il which completes the proof of Theorem 2.4.1. 
In the case of square nonsingular matrices there is a companion theorem to 

Theorem 2.4.1 which states that if KPA < 1, then 

(2.4.1) 11 (A + dA)' - A-'I < IA-IlKpA/(1 - KpA) . 

The following theorem establishes the analogous, but somewhat more compli- 
cated, result for the pseudoinverse of a full rank rectangular matrix. The theorem is 
stated for the case m ? n. 

THEOREM 2.4.2. A ssume m > n > 1, rank (A) = n and KPA < 1. Let P = 
(A + dA)+ - A+. Then 

(2.4.2) (a) P = A+(BA+ + CQ2), 

where B, C, and Q2 are respectively m X n, m X (m - n), and (m - n) X m matrices 
satisfying 

||B|| ? f|dAf1/(1 - KPA), Cf < KPA/(l - KpA), 

Q2Q2T = Imn Q2A = O 

and furthermore 

(2.4.3) (b) |JP|| ? \/21IA ||KpA/ (1 - KPA ). 

Remark. If m = n then the matrix Q2 (of dimension (m - n) X m) is not present 
and the conclusions of Theorem 2.4.2 become P = A+BA+ and IfPfI < 

lIA+IfKpA/(l - KpA) in agreement with Eq. (2.4.1). 
Proof. By either Theorem 2.3.2 or 2.4.1 the rank of A + dA is n. Thus using 

Eq. (2.2.19) the pseudoinverse (A + dA)+ is uniquely determined by the equation 

(2.4.4) (A + dA)T(A + dA)(A + dA)+ = (A + dA)T. 

Let P = (A + dA)+ - A+. Replacing (A + dA)+ by A+ + P in Eq. (2.4.4) leads 
to 

kA + dA)T(A + dA)P = (A + dA)T - (A + dA)T(A + dA)A+ 
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or since AT- ATAA+= 0 

(2.4.5) (A + dA)T (A + dA)P = -(A + dA)T (dA)A+ + dAT (fIm - AA+). 

Using Eq. (2.2.23) we obtain 

(2.4.6) P = (A + dA)+{ - (dA)A+ + (A + dA) T+ (dA) T (Im - AA+)} 

The bound of Eq. (2.4.3) for IIPII can be obtained from Eq. (2.4.6) using Theorem 
2.4.1. However, for some purposes (e.g. Theorem 2.4.5) it is advantageous to have a 
representation of P in which the leading factor is A+ rather than (A + dA)+. To 
this end let Q be an m X m orthonormal matrix, partitioned into submatrices Qi 
and Q2 of dimensions n X m and (m - n) X m, satisfying 

QA- QAR- x 

LQ2AJ X(m-n) - 

where R is nonsingular. The existence of such matrices, Q and R, is assured by the 
singular value decomposition theorem. It is easily verified that 

A = Q1 TR. A+ =R-1Q, 

R-1 = A+QjT, flAfl = ||R||, 

and 

flA+1W = IIR-111 
Let E = (dA)R-1, then 

A +dA = (Q?T + E)R. 

Since all singular values of Q1T are unity and IIEfI ? KPA < 1, Theorem 2.4.1 implies 
that rank (QiT + E) = n and 

||(Q1T + E) || < 1/(1 - KpA) . 

Using Eq. (2.2.22) we obtain 

(2.4.7) (A + dA)+ = R-1(QiT + E)+ = A+Q1T(Q1T + E)+. 

Substituting Eq. (2.4.7) and Im - AA+ = Q2TQ2 into Eq. (2.4.6) gives 

P = A+QjT(QjT + E)+{ - (dA)A+ + (A + dA)T+(dAT)Q2TQ2} 

Therefore 

(2.4.8) P = A+(BA+ + CQ2) 

where 

B =_ QiT(QiT + E)+(dA) 

C = Q T(QiT + E)+(A T + dAT) (dA T) Q2 

BIJ < ldA|j(1- KpA) 

1 1C 11 <--1 ] 

1+1 
0 -I ||dA | | = KPA I 

(I1 
- KPA 

)2 

w ListPAIiLh1s- KPAJ da). 

which establishes assertion (a). 
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It follows immediately that 

flPfl ? 2flA fIKPA/(1 - KPA) 

which is a slightly weaker result than assertion (b). To establish assertion (b) we 
must use the orthonormality of the matrix Q. 

Let at denote the set of all m-vectors having unit euclidean length. Then II Q b 12 + 
IIQ2bfl2 = 1 for all b E Al, and therefore 

max (11QlblI + 1f Q2bfl) = /2. 

Using A+ = R-1Qj in Eq. (2.4.8) we obtain 

IIPII = max IIPbl< IIA+II max fIBR-VQib + CQ2bfl 

< lA+ IIKPA (1 - KPA) max (II QjblI + fI Q2bfl) 
bCLt 

= V2flA lIKPA/(1 - KPA) 

which establishes assertion (b) and completes the proof of Theorem 2.4.2. 
Theorem 2.4.2 will now be applied to Problem LS. The resulting bound on 

Ildxfl/flxII is consistent with the estimated bound given by Golub and Wilkinson in 
[8]. They did not choose to identify the separate roles of PA and Pb or the explicit 
form of k. 

THEOREM 2.4.3. Assume m ? n> 1 rank (A) = n, and KPA < 1. If x and x + dx 
are the unique vectors minimizing JjAx - bfl and JI(A + dA)(x + dx) - (b + db)I 
respectively and r = b - Ax, then 

(2.4.9) fldxfl < -IlA l { IdbII + IdAIl[IIxH + 1lA fl 11rf]} 

If x 5 0, then b 5 0, bA Ax 5 0, and 

(2.4.10) l df l < b l + b PA l+ Klrl 1 
where k = K/ ( - KPA) . 

Remark. If b E (R(A) then lIrlI = 0 and bA = b so that Eq. (2.4.10) reduces to 

(2.4.11) J|dxfljflxfl ? KpA + KPb 

which is the standard result [9, p. 177] for square nonsingular matrices. 
We now present the proof of Theorem 2.4.3. 
By Eq. (2.2.21) the vector dx is uniquely determined by the equation 

x + dx = (A + dA)+(b + db) 

where x = A+b. Thus 

(2.4.12) dx = (A + dA)+db + [(A + dA)+ - A+]b . 

Using the representation of [(A + dA)+ - A+] established in Theorem 2.4.2, 
Eq. (2.4.12) can be written as 

dx = (A + dA)+db + A+BA+b + A+CQ2b. 
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Define the residual vector r = b - Ax and note that Q2b = Q2(r + Ax) = Q2r 
since Q2A = 0. Thus 

dx = (A + dA)+db + A+Bx + A+CQ2r. 

Using the bound for I (A + dA)+II given in Theorem 2.4.1 and the bounds for B, C, 
and Q2 given in Theorem 2.4.2 we obtain 

I~dxII? IIA+IFJ6L1 Jj4jdAjIIJ I + IA-+II -ffdAff1 ji- .1r 
1 - KPA lKPA KpA)2 

which establishes Eq. (2.4.9). 
If x 0 0 then also b 0 0 and bA Ax $ 0. In this case dividing Eq. (2.4.9) 

by jlxii and using IlbAII ? I I A II lxII gives Eq. (2.4.10) completing the proof of 
Theorem 2.4.3. 

Example. The following example shows that the bound of Eq. (2.4.10) is best 
possible in the sense that there exists A, dA, b, and db such that it can be approached 
arbitrarily closely. Let h, s, e, and f be positive numbers with h > 1 and define 

A-=0 h-j b= [0] 

dA[= -2e O db= f1. 

Then h1Ail = 1, K = h, ijdAII = e, PA = e, jibII = (1 + S2)1/2, Ildbll = 

Pb = f(1 + S2)-1/2. 
If x minimizes JlAx - bli then 

x = [1, 0]T, bA= Ax = [1, 0, O]T 

r = b - Ax = [0, 0, S]T 

Using Eq. (2.2.19) one can compute 

2 ( )11 h2e h 1e e 
(A + dA) = 11 + h2e2(1 + e2)} [1+ h2e2 -h2e3 h2e(1 +e2) 

Then 

x + dx = (A + dA)+(b + db) 

(2.4.13) 2 ~~~~~2)~1[11 + (he)- (he) (e) + (he) (se) (2.4.13) =1 + h2e2(1 + he+ hf + (he)hs + (he)2 (se) 

Up to this point no approximations have been used. We now assume that e is 
small in the sense that he << 1, fe << 1, and se << 1. Products containing two or more 
factors of the form (he), (fe), or (se) will be dropped. Then from Eq. (2.4.13) we 
obtain 

x + dx- [he + hf + (he)hsl' 

ffdxff/ffxf hf + he(1 + hs) 
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This should be compared with the bound of Eq. (2.4.10) which for this problem 
can be written as 

d< h f (1+S2)1/2 he F h s 
lll = (1-he) (1+82)1/2 1 (1-he)L (1-he) 1J, 

= (hf + he(1 + hs))(1 + (he)) . 

For use in the proof of Theorem 2.4.5 we now state the transposed version of 
Theorem 2.4.2. 

Theorem 2.4.4 follows directly from Theorem 2.4.2 and the third identity of 
Eq. (2.2.12). 

THEOREM 2.4.4. Assume n > m > 1, rank (A) = m and KPA < 1. Let P = 

(A + dA)+ - A+. Then 

(2.4.14) (a) P = (A+B + Q2C)A+ 

where B, Q2, and C are respectively m X n, n X (n - m), and (n - m) X n matrices 
satisfying 

JIBII < ?IdA 11/(1 - KpA), 11CII < KPA/(l - KpA), 

Q2TQ2 = Inm, AQ2 = 0 

and furthermore 

(2.4.15) (b) IIPII < ? 2IIA IIKPA/(1 - KPA). 

THEOREM 2.4.5. Assume n > m > 1, rank (A) = m, andKPA < 1. If x and x + dx 
are the minimum length vectors satisfying Ax = b and (A + dA) (x + dx) = b + db 
respectively then 

(2.4.16) 1 dxjI =-IA+ + [IAdbII + 1 _ ,pA 
I dAIHIxII] 

and if b 5 0 then x 5 0 and 

(2.4.17) j'dxjj/jjxjj < Kpb/(l - KpA) + V\2KPA/(l - KpA). 

Proof. The vector dx is uniquely determined by the equation 

x + dx = (A + dA)+(b + db) 

where x = A+b. Thus 

(2.4.18) dx = (A + dA)+db + [(A + dA)+ - A+]b. 

Using the representation of [(A + dA)+ - A+] given in Theorem 2.4.4, Eq. 
(2.4.18) can be written as 

dx = (A + dA)+db + (A+B + Q2C)A+b 
= (A + dA)+db + (A+B + Q2C)x. 

Using the bound for (A + dA)+ given in Theorem 2.4.1, the bounds for B and C 
given in Theorem 2.4.4 and the orthonormality of Q2, we obtain 

(2.4.19) dxf< 1+11 [\dbI 2 + 1 \PA fdAII.IIxII]. 
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If b = 0 then x # 0 and dividing Eq. (2.4.19) by l1xii gives Eq. (2.4.17) completing 
the proof of Theorem 2.4.5. 

Example. We give an example showing that the constant, V/2, appearing in 
Eq. (2.4.16) cannot be reduced. Let 

0[ 1 0 0 0 e 0 b 

Then 

A+ = AT[AAT]-1 = AT 

(A + dA)+ = (A + dA)T[(A + dA)(A + dA)T]- 

1 
r10+ 

e2 3 e 
1e2 e4Le2 

x = A+b = [0, 1, O]T 

x + dx = (A + dA)+b = [-e, 1, e + e3]T/(1 + e2 + e4) 

dx = (x + dx) - x = [-1,-e - e3, 1 + e2]Te/(l + e2 + e4) 

IIxfl = 1 

fldxfl = V/2e + 0(e3) for smalle 

flA+1f = IIAII = K = 1 

fldAIl = PA = e. 

The bound given by Eq. (2.4.16) is 

Ildxfl < V/2e/(1 - e)2 

illustrating that the constant, V/2, cannot be reduced. 
In the context of functions having matrix arguments and matrix values, a 

function g(x, h) is the differential of a function f(x) at xo if g is a linear function of 
h and 

lim f(xo + dx) - f(xo) -g(xo, dx) = 0 
11dx1 O Ildx 

This may be indicated by the notation df(x) = g(x, dx)Ix~x 
THEOREM 2.4.6. For m > n > 1 let a denote the set of all m X n matrices of rank n. 

The pseudoinverse operator is differentiable on a, with differential 

(2.4.20) dA+ = -A+(dA)A+ + A+A T+ (dA) T (Im - AA+). 

Proof. For A et we must evaluate the limit as IIdA -l 0 of 

Z(A, dA) 
(2.4.21) (A + dA)+ - A+ - [-A+(dA)A+ + A+AT+(dA)T(I - AA+)] 

IldA 11 

Using the expression for (A + dA)+ - A+ given in Eq. (2.4.6) and writing A8 = A + 
dA Eq. (2.4.21) becomes 
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Z(A, dA) 
(2.4.22) (A+ - A+))(dA)A+ + (A+AST - A+A T+) (dA) T (I - AA+) 

jldA 11 

Statement (b) of Theorem 2.4.2 and statement (b) of Theorem 2.4.4 respectively 
assure the continuity of the pseudoinverse operator for all A E a and for all AT such 
that A E a. Thus for A EE a 

As+-A+ ---* as IldA 11 -> O 

and 

A6+A6AT+ - A+AT+ = (A+ - A+)A6T+ + A+(A8T+ - AT+) - 0 as IldA > 0 

It follows that 

lim Z(A, dA) = 0 
1IdA I-o 

which establishes Theorem 2.4.6. The transposed form of Theorem 2.4.6 is 
THEOREM 2.4.7. For n ? m ? 1 let a, denote the set of all m X n matrices of rank 

m. The pseudoinverse operator is differentiable on a with differential 

(2.4.23) dA+ = -A+(dA)A+ + (In - A+A)(dA)T(AT+A+). 

3. Two Basic Householder Orthonormal Transformation Algorithms. We 
remark here that in Sections 1 and 2 the presentation was basically mathematical. 
In this third section and in Sections 4 and 5 the tempo of the paper will change from 
mathematical discussions to procedural definition for relevant computation methods 
and the presentation of related concepts. 

An m X m Householder orthonormal reflection matrix [1] is of the form Q = 

Im + f-1UUT where u is an m-vector satisfying IluH I 0 and 3 = - IJu2/2. We wish 
to determine the vector u so that for a particular given m-vector w the transformed 
m-vector wv- = Qw has zero components in prescribed positions and leaves certain 
other prescribed components unchanged. 

We have found that for our purposes the required action of the transformation 
w = Qw can be described by three nonnegative integer parameters 1, t, and m, 
(1 + t + 1 _ m), as follows: 

Components 1 through 1 are to be left unchanged; 
Component 1 + 1 is permitted to change; 
Components 1 + 2 through 1 + t + 1 are to be left unchanged; 
Components 1 + t + 2 through m are to be zeroed. 

In Sections 3.1 and 3.2 algorithms are given for constructing and applying such 
transformation matrices. Subroutines implementing these two algorithms may be 
used as basic components with which a systematic set of programs can be con- 
structed for a variety of linear algebraic computations. 

In [4] Businger and Golub gave the explicit details for constructing a transfor- 
mation H = Im + f-lyyT such that for the vector wb = Hw: 

Components 1 through 1 + t are to be left unchanged; 
Components 1 + t + 2 through m are to be zeroed. 
It is easy to see that if we let P, t denote the permutation matrix which ex- 
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changes components indexed (1 + 1) and (1 + t + 1), then we will have the identity 
Q = P 1,HP 1,. 

Thus the construction and application could be based on this identity and the 
algorithm of [4]. But for the purpose of having the present paper contain the 
operational details which will permit easy coding on a given computer we discuss the 
construction and application of the matrix Q = IJ + I-1UUT explicitly. 

3.1. Constructing the Matrix Im + 3-lUUT. Suppose that 1, t, and m are given 
integers with 1 > 02 t > 0, and 1 + t + 1 ? m. 

We segment a given m-dimensional column vector 

1 terms 1 term t terms m-1- t-1 terms 

(3.1.1) w = 
[W12 

... 
2 W1 Wp, Wz+22 ... 2 Wl+t+, Wl+t+22 

.. 
2 Wm] 

and construct a Householder orthonormal transformation 

(3.1.2) Q = Im + SOB uu if, 0 

= Im if 30 

with 

(3.1.3) U = [0 202 Up 02 * 0, Ul+t+22 * * UmX 

(3.1.4) m= sgn (wp)(wp2+t+2 + + W 

(3.1.5) up = - , 

(3.1.6) = Jup 2 

and 

(3.1.7) us = Wi, (i = 1 + t + 2, * ,m). 

Then Q is orthonormal and satisfies 

(3.1.8) QW = 
*w [(uw)3]u if 0 

(3.1.9) = [W1i ,.. 2 WI) Uu, Wl+2, * * Wl+t+l, 0 * * O] X 

which is the desired transformation. 
We now present an algorithm for computing the vector u and o-. This algorithm 

will be denoted by HI (1, t, m, w, up, oU) where the input consists of the integers 
1, t, and m and the m-vector w. On output the components of w indexed 1 + t + 2 
through m will be replaced by the corresponding elements of the m-vector u. The 
(1 + 1)st component of u and the number cru will be returned as up and oA. 

Type: Integer 1, t, m, i 
Real wi (i = 1,* * * m) vu, up 
Double Precision s 

Step Number Description 
1 Set s: = wp2, i: = l + t + 2. 
2 If i ? sets: = s +w 2andi: = i+ 1.Thengo 

back to step 2. Else go to step 3. 
Comment. Some procedure for preventing underflow/overflow must usually be 
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employed in the calculation of s. See [12] for a description of one such procedure. 
3 Set oA = -sgn (wy) .s1/2. 

4 Set up = wp- u. 
5 The vector u has been calculated and Eq. (3.1.9) 

is satisfied. 
Comment. The scalar j3 is implicitly available as the product: = * up and hence 

need not be explicitly saved. 
The scalars ui, (i = 1 + t + 2, . *, m), can reside (remain) in the same storage 

previously used (known as) wi, (i = 1 + t + 2, * * *, m). Usually it is convenient to 
store one of the quantities, up or o-, in the location formerly occupied by wp, and 
store the other one in an extra location. 

3.2. Multiplication by Im + f-1UUT. Assume that Q is given as in Eq. (3.1.2) and 
that we wish to form the matrix product Q c for a given m-dimensional column 
vector c. (Clearly, if we wish to form the matrix product CTQ for a given m-dimen- 
sional row vector CT, we may compute cTQ - [QC]T, since Q is symmetric.) 

We first note that 

(3.2.1) Qc = c + [(uTc)/13]u, 

where we have already calculated the vector u. 
We now describe an algorithm for computing Q c and placing it in the storage 

previously occupied by c. This algorithm will be denoted by H2(l, t, m, u, up, on, c) 
where the input consists of the integers 1, t, and m, the scalar a., the m-vector c, and 
the (possibly) nonzero components of the m-vector u stored as follows: Components 
1 + t + 2 through m of the vector u are stored in the array called u. The (1 + 1)st 
component of the vector u is stored in up. On output the vector c will have been 
replaced by Qc. 

Type: Integer 1, t, m, i 
Real ci, (i =1, m) up, = + t + 2, *, m), 

Ocu / 

Double Precision s 
Step Number Description 

1 Set s: = upacp, i = l + t + 2. 
2 If i < sets: = s+uic,i: = i+ 1. 

Then go back to step 2. Else go to step 3. 
3 If s = 0 go to step 9. Else go to step 4. 
4 Set 3: = au up. 

5 If @ = O go to step 9. Else go to step 6. 
6 Set s: = s/b. 
7 Set cp: =cp + up*s, i: = l + t + 2. 
8 If i < m set ci: = ci + uirs, i: = i + 1. Then go 

back to step 8. Else go to step 9. 
9 The vector c has been replaced by Qc. 

Comment. Some procedure for preventing underflow/overflow is generally needed 
when computing the inner product in step 2. See [12] for such a procedure. 

4. Extension of the Businger-Golub Algorithm to Permit Rank Deficiency. 
4.1. The Businger-Golub Algorithm. This algorithm, [1], uses a sequence of 
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Householder orthonormal transformations Hj and column permutations Sj to re- 
duce an m X n matrix A of rank k = n < m to upper triangular form. Thus 

R 
(4.1.1) HHni .. HiASi * Sn= QAS = 

where Qmxm and SnXn are orthonormal and RnXn is upper triangular and nonsingular. 
We see that 

A QT[R]ST 

and by checking conditions (2.2.8) it may be directly verified that 

(4.1.2) A+ = S[R-1, O]Q = SR '[In, Onx(m-n)]Q . 

The unique solution, Xo, of Problem LS, is therefore representable as 

(4.1.3) So = SR-1[In O]Qb. 

Working from right to left in Eq. (4.1.3) the computation of xo proceeds as follows: 

(a) Compute c = Qb Hn(Hn1 .. . (Hib) . . 

(4.1.4) (b) Let 6 denote the first n components of c; 

(c) Compute d as the solution of Rd = d; 

(d) Permute the components of d as indicated by Sd to form xo. 

4.2. Extension for Rank Deficiency. We now discuss an extension of this algorithm 
for the case where rank (A) = k < n. Either m ? n or m < n is permitted. 

We first note that (with exact arithmetic) all elements below the kth row in the 
product matrix 

(4.2.1) Hk *HAS, .. Sk-QAS 

will be zero. Thus 

k n-k 
cols. cols. 

(4.2.2) QAS =Ri, R12 ]k rows 

Lo 0 m -k rows 

where Ril is upper triangular and nonsingular. 
By applying specially structured n X n Householder matrices, Ki, from the right 

in the order i = k, k- 1, I ,1one can obtain 

k n-k 
cols. cols. 

(4.2.3) [R11, R12]KkKkl ... K1 -[R11, R12]T = [R, 0 ] k rows 

where RkXk is upper triangular and nonsingular. The effect of the transformation Ki 
is to zero elements k + 1 through n in row i while not disturbing the zeros present 
in rows i + 1 through k and the subdiagonal zeros in rows 2 through i. 

The matrix Ki may be constructed using the procedure 

(4.2.4) Hi (i - 1, k - i, n, A;, *, aii) 



HOUSEHOLDER ALGORITHM FOR LEAST SQUARES 805 

(see Section 3). Here A = {a'j} with rows Ai. denotes the storage array which 
initially contains A and at the time of this procedure call contains [RI,, R12]Kk 
... Ki+1. The asterisk in Eq. (4.2.4) denotes an auxiliary computer storage loca- 

tion. 
Combining Eqs. (4.2.2) and (4.2.3) gives 

k n-k 
-cols. cols. 

R 0 
m -k 

rows 
=Ik F 

(4.2.5) QAST = [? O I krows L= m -k JR[Ok kX(n-k)] 

L0 0 m -k rows ?-(m-k)Xk 

where Qmxm and (ST),x, are orthonormal and RkXk is nonsingular and upper tri- 
angular. Consequently A has the decomposition 

(4.2.6) A = QT[Ik, 0]TR[Ik , O]T TST 

and it may be verified, using Eq. (2.2.8) that 

(4.2.7) A+ = ST[Ik, O]TR-1[Ik, 0]Q. 

Thus the minimum length solution, xo, of Problem LS is representable as 

(4.2.8) xo = ST[Ik, O]TR-1[Ik, 0]Qb . 

Working from right to left in Eq. (4.2.8) the vector xo can be computed as follows: 

(a) Compute c = Qb Hk(Hkl ... (H1b) *..) 

(b) Let 6 denote the first k components of c 

(c) Compute dby solving R! =c 

(4.2.9) (d) Defined = [7] k rows 
0 n -k rows 

(e) Compute e = Td Kk(Kk1 ... (K1d) ...) 

(f) Permute the components of e as indicated by Se to form x . 

It may be verified that the matrices R in Eq. (4.1.1), RI, in Eq. (4.2.2), and R 
in Eq. (4.2.3) have the same set of nonzero singular values as A and thus the same 
rank and condition number. 

4.3. The Complete Solution. Using the orthonormality of (ST) and Eq. (4.2.6) 
it can be verified that the n X (n -k) matrix H defined by 

(4.3.1) I-I. X = ST[O(,-k)Xk, In- k] 

satisfies 

(4.3.2) HTH = In-k 

and 

(4.3.3) AH = OmX(n-k). 

Thus the complete general solution of Problem LS can be written as 

(4.3.4) x = xo + Hy 
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where y is an arbitrary (n - k)-dimensional vector. For any (n - k) X (n - k) 
orthonormal matrix B, the matrix 

H = HB = ST[Okx(n-k), BT]T 

also satisfies Eqs. (4.3.2) and (4.3.3) and thus could be used as in Eq. (4.3.4) to 
provide an alternative parametrization of the general solution of Problem LS. 

Generally it is not necessary to compute H explicitly but rather a product of the 
form HU or UH is needed. Using Eq. (4.3.1) we see that Ynxq = HnX(n-k)U(n-k)Xq 

can be computed as follows: 
(a) Define 

VnXq = OkX 

(b) Compute Wnxq = TV Kk(Kkl * * (K1V) * ). 

(c) Permute the rows of W as indicated by SW to form Ynxq. 
Similarly YX(n-k) = UqxnHnX(n-k) can be computed as follows: 
(a) Permute the columns of U as indicated by US to form VqXn. 

(b) Compute WqXn = VT ... ( (VKk) ... K2)K1. 
(c) Define YqX(n-k) to be the matrix consisting of the last (n - k) columns of W. 
4.4 Matrix Replacement, Pseudorank, and Column Interchanges. In actual ap- 

plications in which Problem LS arises it is usually appropriate to regard the matrix 
A as merely a representative member of some set of matrices, A, which are permis- 
sible replacements for A. 

We mention three possible reasons for this. It is beyond the scope of this paper 
to elaborate on these points. 

(a) The coefficients of [A, b] may be the result of measurements or previous 
computations of limited precision. 

(b) If the matrix A arises from the linearization of a nonlinear function, f, 
(as in Newtonian iteration) then the validity of Ax as an approximator for f (t + x) 
-f (t) generally decreases as lIx 11 increases. Thus if a small change in A can produce a 
relatively large reduction in lIx II such a change may be desirable. 

(c) The columns of A may represent effects (basis functions) which are too 
highly correlated to be distinguishable using the available data set. 

There are various ways in which the set a may be defined and various criteria 
according to which one might decide to replace A by a different member of a. In 
any such method the rank of A is an essentially irrelevant concept. The relevant 
quantity is the rank of the matrix A which replaces A. We define the pseudorank of 
A, relative to a particular computational procedure, to be the rank of the matrix 
A which that procedure selects and uses in place of A. To call attention to the role 
of a tolerance parameter, say E, in a computational procedure we may use the term 
E-pseudorank. 

For an arbitrary m X n matrix A with column vectors ah, (j = 1, * *, n), let 

(4.4.1) IIA IIc = max IIajII. 

Eq. (4.4.1) defines a matrix norm. 
We assume that A satisfies IIA ll = 1 and that a positive number e is given 
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which determines the set a, according to 

(t= [{A+dA: IIdAIIc 5 E}. 

The arithmetic operations and computer storage will be selected to have a 
relative precision somewhat smaller than E. 

The parameter e will be used in the computation as follows: Suppose the 2q 
transformations S1, H1, * * Sq, Hq of Eq. (4.2.1) have been computed and applied 
yielding 

A = Hq ... HiASi . **Sq. 
Let 

m 1/2 

c; = i (3n = q + 1 ***,n) 
j=,q+l 

Let p denote the smallest index such that 

cp = max {c;: j = q + 1, , n} 

If c, < e we propose to treat all of the numbers a-ij; i = q + 1, , m;j=q + 1, 
* *,nas zero. 

This amounts to replacing A by A + dA with IIdA di C < . This is equivalent to 
replacing A by A + dA with IIdA 11, < e since 

dA = H1 ... HqdASq ... S1 
and 

(4.4.2) 1lH1 ... HqdASq ... Sfl1c = fldAf, $< E. 

The equality in Eq. (4.4.2) follows from the fact that the Hj are orthonormal 
matrices while the Sj are column permutations. 

Furthermore Theorem 2.2.4 may be used to show that Cond (A + di) < 
Cond (A), and since the condition number is invariant under orthonormal transforma- 
tions, Cond (A + dA) < Cond (A). 

If cp, ? z we define the pseudorank, k, of A to be the integer q and proceed to 
the backward elimination phase of the computation, indicated by Eq. (4.2.3). 

If cp > E, columns p and q + 1 of A are interchanged, the matrix Sq+, being de- 
fined to represent this operation. The computation then proceeds to the construction 
of Hq+,. Note that the (q + 1)st diagonal element of Hq+iASq+i will be either c, or 
-cp and constitutes the (q + l)st diagonal element of the matrix RI, of Eq. (4.2.2). 
It follows that all diagonal elements of RI, exceed E in magnitude. 

The diagonal elements of R, as defined by Eq. (4.2.3), also exceed E in magnitude 
since during the operations indicated in Eq. (4.2.3) the magnitude of the ith diag- 
onal element may be increased but not decreased on multiplication by Ki and is 
unaffected by the matrices Kj, j # i. 

5. Other Linear Algebraic Computations. 
5.1. Multiple Right Sides. The matrices Hj, Sj, K , and R depend on A and E and 

are independent of b. Once the matrices Hj, Sj, Ki, and R have been computed and 
stored in compact form the procedure (4.2.9) can be executed for any number of 
different vectors b. 
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5.2. Computation of the Pseudoinverse, A+. It is not necessary to compute A+ 
explicitly since products of the form A4-B or BA+ can be computed by appropriate 
interpretation of Eq. (4.2.7) as for example the computation of A+b by the proce- 
dure of Eq. (4.2.9). However, if one does wish to compute A+, this can be accom- 
plished by computing A+Im using the procedure of Eq. (4.2.9) to compute each 
column of the product. 

5.3. Triangutarization as a Preliminary Step. The m X (n + 1) matrix [A, b] 
can be transformed by orthogonal transformations to a p X (n + 1) upper tri- 
angular matrix [C, d], with p = min (m, n + 1), as a preliminary step before begin- 
ning the algorithm of Section 4 or other algorithms related to Problem LS. 

The relevance of this preliminary step depends upon the fact that if [A, b] and 
[C, d] are related by 

n 1 

Cols. col. 

(5.3.1) Qmxm[A, b] [C d p rows 
LO 0 J m - prows 

where Q is orthonormal, then [A, b] and [C, d] have a number of significant properties 
in common. Specifically it can be verified that 

flAx - bfl = flCx - dfl for all x, 

that C and A have the same set of nonzero singular values and thus the same rank 
and condition number, and that 

[A, b]T[A, b] = [C, d]T [C, d]. 
Therefore [C, d] can be used in place of [A, b] in many algorithms related to Problem 
LS. 

This transformation can be organized so that rows or groups of rows of [A, b] 
are processed sequentially in forming [C, d]. The storage requirement for this proc- 
essing is just the storage required for [C, d] plus the storage required for the largest 
block of rows of [A, b] which is to be introduced at any one stage. The minimum 
storage requirement would be (n + 1) (n + 2)/2 locations for the upper triangular 
matrix [C, d] plus n + 1 locations for a single row of [A, b]. 

This transformation can be used to overcome storage constraints when m >> n 
and the main computer storage is large enough to accommodate (n + 1) (n + 4)/2 
locations but not large enough to accommodate the m(n + 1) elements of [A, b] 
simultaneously. It is also useful for the reduction of total execution time, with or 
without the sequential organization, if m >> n and one wishes to process [A, b] more 
than once, say in combination with other data sets or by different algorithms in 
order to obtain different types of information. 

We note for comparison that in the more widely known A TA approach to solving 
Problem LS it is also possible to process the rows of [A, b] sequentially in computing 
the (n + 1) X (n + 1) matrix 

n 1 
cols. col. 

B n rows [N v ] _ [Ab]TEAb] 
1 row V Ly L J 
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and since B is symmetric it suffices to compute and store only the (n + 1) (n + 2)/2 
upper triangular submatrix of B, say B. However since Cond (C) = Cond (A) and 
Cond (N) = [Cond (A)]2, the computer word length which is adequate for storing 
elements of [A, b] will also be adequate for storing elements of [C, d], whereas the 
elements of B will require up to twice that word length. 

If the entire matrix [A, b] can be treated as a whole then the transformation can 
be accomplished by constructing and applying Householder matrices Hi in the 
order i = 1, *, p with p = min (m, n + 1), as follows: 

J d p rows 

-0 - - p rows 

For sequential processing let [A, b] be partitioned in the form 

FA, b, ml rows 
(5.3.2) [A, b] = [: I 

LAq bqJ Mqrows 

Define 

(5.3.3) /i = max mt sO = 0 

and 

St nmT , t = 1, ***, q 

Let G denote a computer storage array containing v rows and n + 1 columns 
where 

(5.3.4) v = max {mt + min [n + 1, st-I]} < n + 1 + /u. 

Let G(ii, i2) denote the subarray of G consisting of rows ii through i2. 

Step 1. Set t = 1, and 0o = 0. 
Step 2. Set y = zt-i + mt. 

Store [At, be] into G(i30l + 1, y). 
Set Ot = min {In + 1, y}. The integer At can replace At-l in 
storage. 

(5.3.5) Step 3. Construct and apply Householder matrices to reduce the contents 
of G(1, y) to upper triangular form: 

Ha(tt) - H, (t) G (1 y) ->G (1, Liz) . 

Step 4. If t = q, terminate with the transformed upper triangular matrix 
[C, d] stored in G(1, A,). Otherwise replace t by t + 1 and go to 
step 2. 

This procedure can be interpreted as effecting the orthonormal transformation 

(5.3.6) QqPq Q2I'2QI[A, b] Q[A, b] [C d 
Lo ol m - G3 rows 
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where 

Qt = tH$t H1t (t=1, * ,q) 

Q= [Qt 01 At-l + mt rows (t 

O I m -t- - mt rows 

and Pt is a permutation matrix which moves the submatrix [As, b t] from its position 
in rows s t -m t + 1 through s t to rows t t-i + 1 through / t-i + m t while moving 
rows A t-l + 1 through s t-, (which contain only zeros) to rows A t-l + mt + 1 
through st. 

After the first n + 1 rows of [A, b] have been processed, the subdiagonal elements 
in rows 2 through n + 1 of G will be zero and will remain zero thereafter. The pro- 
cedures H1 and H2 of Section 3 are parametrized so that arithmetic operations in- 
volving these zero elements can be avoided. 

If m > n + 1 and L = 1 the triangularization procedure described above 
requires (n + 2)(n + 1) storage locations. This requirement can be reduced to 
(n + 4) (n + 1)/2 by modifying the procedure so that the subdiagonal elements in 
rows 2 through n + 1 of G are always zero (and thus require no storage) rather than 
only being zero after the first n + 1 rows of A have been processed. It suffices to 
replace steps 1 and 2 of the triangularization procedure by: 

Step 1'. Set t = 1, and zy = n + 2. In this modified procedure it is assumed that 
mt = 1 for all t. 

Step 2'. Store [A t, bt] into G(n + 2, n + 2). Set ft = min (n + 1, t). The integer 
Ot can replace 3t-1 in storage. 

Whenever mt = 1 one could use Jacobi plane rotation (or reflection) matrices 
instead of Householder matrices to achieve a slight reduction in the number of 
arithmetic operations and possibly a slight reduction of roundoff error. 

5.4. Triangularization of a Block Diagonal Matrix. Suppose A has a block diagonal 
structure in the sense that there exists an integer w < n, a partitioning as in Eq. 
(5.3.2), and a nondecreasing set of integers, ji, * *, j,, such that all nonzero ele- 
ments in the submatrix A t occur in columns 7 t through . t + w - 1. For this case 
it can be verified that all nonzero elements in the ith row of the upper triangular 
matrix C of Eq. (5.3.6) will occur in columns i through i + w - 1. Furthermore 
rows 1 through . t - 1 of C will not be affected by the processing of the submatrices 
A t, * * *, Aq in algorithm (5.3.5). 

Taking these observations into account algorithm (5.3.5) can be modified so 
that the number of columns required in the storage array G is only w + 1. At termi- 
nation of the algorithm the matrix C will be in the array G with 

gij = ci+j i= 1, , n + 1;j = 1, ,w 

If the pseudorank of C is n then the solution can be computed by back substitution 
with no need to occupy additional storage. 

This procedure can result in substantial saving of storage. For example the 
problem of fitting 500 data points using 32 cubic polynomials with continuity of 
the polynomial values and first derivatives at the 31 prespecified breakpoints leads 
to a 500 X 67 matrix [A, b] with 33,500 elements. With appropriate parametrization 
of the polynomials the bandwidth, w, of A will be 4. Therefore this problem can be 
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processed in a (67 + /.) X 5 storage array (335 + 5,4 elements) where /L is defined by 
Eq. (5.3.3) and can be taken to be 1 for greatest economy of storage. If each sub- 
matrix [A t, b J is taken to have as many rows as possible without forcing an increase 
in w then the number of arithmetic operations will be the same as in the operation- 
count-economizing procedure of [15]. (The running time for the above example on 
an IBM 7094-I using full double precision arithmetic was 1.83 seconds.) 

5.5. The Case of m < n. The extended algorithm of Section 4 can be applied to 
Problem LS regardless of whether m _ n or m < n. However if m < n, and particu- 
larly if it is expected that the pseudorank k will be m, then it is somewhat more 
natural to apply a transposed form of the extended algorithm. 

Applying the extended algorithm to AT one obtains in place of Eq. (4.2.6) 

(5.5.1) A = ST[Ik, 0]"RT[Ik, O]Q 

and thus 

(5.5.2) A+ = QT[Ik, 0]T(RT)-1[Ik 0]TTST 

Then the minimum length solution, xo, of Problem LS is representable as 

(5.5.3) x= QT[Ik, 0]T(RT)1[Ik, 0]TTSTb. 

Equation (5.5.3) can be translated into an algorithm just as Eq. (4.2.8) was trans- 
lated into the algorithm (4.2.9). These details are omitted. 

Defining 

(5.5.4) Hnx(Hn_.k) = QT[o(nk)Xk Ink] 

the general solution of Problem LS can be written as x = xo + Thy where xo is de- 
fined by Eq. (5.5.3) and y is an arbitrary (n - k)-dimensional vector. 

This transposed form of the algorithm is particularly appropriate when k = m 
for then Eq. (5.5.1) reduces to 

(5.5.5) A = SRT[Im, O]Q 

with a corresponding simplification of Eqs. (5.5.2) and (5.5.3). 
5.6. Linear Least Squares with Linear Equality Constraints. Consider Problem 

LS subject to the additional condition that 

(5.6.1) Cx = d 

where C is an m' X n matrix and d is an m' dimensional vector in the range space of 
C and the e-pseudorank, k', of C is less than n. 

The extended algorithm (preferably in its transposed form if m' < n, as will 
commonly be the case) can be applied to [C, d] to compute an n-vector ? and an 
n X (n - k') matrix H such that the general solution of Eq. (5.6.1) can be expressed 
as 

(5.6.2) x = x + Hy 

with y arbitrary. Substituting Eq. (5.6.2) into Problem LS gives 

fJAx - bjl = JIFy - g91 

where 
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(5.6.3) F = AH 

and 

g = b - AX. 

The extended algorithm can be applied to [F, g] to compute a vector yo which 
minimizes jFy - g Substituting this yo into Eq. (5.6.2) gives the final solution 

(5.6.4) X = x + Hyo. 

Remarks. (a) If the e-pseudorank, k, of F is less than n -k' then Yo will be the 
minimum length solution to the problem of minimizing flFy gf and xo will be the 
minimum length solution of Problem LS subject to Eq. (5.6.1). 

(b) The matrix H need not be computed explicitly. The multiplications involv- 
ing H in Eqs. (5.6.3) and (5.6.4) can be computed as indicated in Section 4.3 or 
similarly based on Eq. (5.5.4). 

(c) The multiplications involving H are stable with respect to roundoff error 
since the columns of H are orthonormal. By Theorem 2.2.4, there are conditions, 
such as A being of rank n, which assure that Cond (F) < Cond (A). 
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